关于余弦定理说课稿3篇
作为一位兢兢业业的人民教师,常常需要准备说课稿,借助说课稿可以更好地组织教学活动。那么优秀的说课稿是什么样的呢?下面是小编精心整理的余弦定理说课稿3篇,仅供参考,大家一起来看看吧。
余弦定理说课稿 篇1
尊敬的评委老师们:
你们好,我今天说课的题目是余弦定理,(说教材) "余弦定理"是人教A版数学第必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是"正弦定理、余弦定理"教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于"定理教学课".
这堂课并不是将余弦定理全盘呈现给学生,而是从实际问题的求解困难,造成学生认知上的冲突,从而激发学生探索新知识的强烈欲望。另外,本节与教材其他课文的共
性是都要掌握定理内容及证明方法,会解决相关的问题。
下面说一说我的教学思路。
(教学目的)
通过对教材的分析钻研制定了教学目的:
1.掌握余弦定理的内容及证明余弦定理的向量方法,会运用余弦定理解决两类基本的解三角形问题。
2.培养学生在方程思想指导下解三角形问题的运算能力。
3.培养学生合情推理探索数学规律的思维能力。
4.通过三角函数、余弦定理、向量的数量积等知识的联系,来理解事物普遍联系与
辩证统一。
(教学重点)
余弦定理揭示了任意三角形边角之间的客观规律,()是解三角形的重要工具。余弦定理是初中学习的勾股定理的拓广,也是前阶段学习的三角函数知识与平面向量知识在三角形中的交汇应用。本节课的重点内容是余弦定理的发现和证明过程及基本应用,其
中发现余弦定理的过程是检验和训练学生思维品质的重要素材。
(教学难点)
余弦定理是勾股定理的推广形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的发现和证明过程中,起到奠基作用,因此分析勾股定理的结构特征是突破发现余弦定理这个难点的关键。
(教学方法)
在确定教学方法之前,首先分析一下学生:我所教的是课改一年级的学生。他们的基础比正常高中的学生要差许多,拿其中一班学生来说:数学入学成绩及格的占50%
左右,相对来说教材难度较大,要求教师吃透教材,选择恰当的教学方法和教学手段把
知识传授给学生。
根据教材和学生实际,本节主要采用"启发式教学"、"讲授法"、"演示法",并采用电教手段使用多媒体辅助教学。
1.启发式教学:
利用一个工程问题创设情景,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。
2. 练习法:通过练习题的训练,让学生从多角度对所学定理进行认识,反复的练习,体现学生的主体作用。
3. 讲授法:充分发挥主导作用,引导学生学习。
4. 演示法:利用动画、图片,激发学生的学习兴趣,调动学生积极性。
这节课准备的器材有:计算机、大屏幕。
(教学程序)
1. 复习正弦定理(2分钟):安排一名同学上黑板写正弦定理。
2. 设计精彩的新课导入(5分钟):利用大屏幕演示一座山,先展示,后出现B、C,
再连成虚线,并闪动几下,闪动边AB、AC几下,再闪动角A的阴影几下,可测得
AC、AB的长及∠A大小。
问你知道工程技术人员是怎样计算出来的吗?
一下子,学生的注意力全被调动起来,学生一定会采用正弦定理,但很快发现
∠B、∠C不能确定,陷入困境当中。
3. 探索研究,合理猜想。
当AB=c,AC=b一定,∠A变化时,a可以认为是A的函数,a=f(A),A∈(0,∏)
比较三种情况,学生会很快找到其中规律。 -2ab的系数-1、0、1与A=0、∏/2、∏之间存在对应关系。
教师指导学生由特殊到一般,经比较分析特例,概括出余弦定理,这种促使学生主动参与知识形成过程的教学方法,既符合学生学习的认知规律,又突出了学生的主体地位。"授人以鱼",不如"授人以渔",引导学生发现问题,探究知识,建构知识,对学生
来说,既是对数学研究活动的一种体验,又是掌握一种终身受用的治学方法。
4. 证明猜想,建构新知
接下来就是水到渠成,现在余弦定理还需要进一步证明,要符合数学的严密逻辑推理,锻炼学生自己写出定理证明的已知条件和结论,请一位学生到黑板写出来,并请同学们自己进行证明。教师在课中进行指导,针对出现的问题,结合大屏幕打出的正
确过程进行讲解。
在大屏幕打出余弦定理,为了促进学生记忆,在黑板上让学生背着写出定理,也是当
堂巩固定理的方法。
5. 操作演练,巩固提高
定理的应用是本节的重点之一。我分析题目,请同学们进行解答,在难点处进行点拨。以第二题为例,在求A的过程中学生会产生分歧,一部分采用正弦定理,一部分采用余弦定理,其实两种做法都可得到正确答案,形成解法一和解法二。在这道例题中进行发散思维的训练,(在上例中,能否既不使用余弦定理,也不使用正弦定理,
求出∠A?)
启发一:a视为B 与C两点间的距离,利用B、C的坐标构造含A的等式
启发二:利用平移,用两种方法求出C’点的坐标,构造等式。使学生的思维活跃,渐入新的境界。每次启发,或是针对一般原则的提示,或是在学生出现思维盲点
处点拨,或是学生"简单一跳未摘到果子"时的及时提醒。
6. 课堂小结:
告诉学生余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理
的特例。
7. 布置作业:书面作业 3道题
作业中注重余弦定理的应用,重点培养解决问题的能力。
以上是我的一点粗浅的认识,如有不对之处,请老师评委们给与指教,我的课说完了,谢谢各位。
余弦定理说课稿 篇2
大家好,今天我向大家说课的题目是《余弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一、教材分析
本节知识是职业高中数学教材第五章第九节《解三角形》的内容,与初中学习的勾股定理有密切的联系,在日常生活和工业生产中也时常有解三角形的问题,在实际测量问题及航海问题中都有着广泛的用,而且解三角形和三角函数联系在高考当中也时常考一些解答题。并且在探索建立余弦定理时还用到向量法,坐标法等数学方法,同时还用到了数形结合,方程等数学思想。因此,余弦定理的知识非常重要。特别是在三角形中的求角问题中作用更大。做为职业高中的学生必须学好学透这节知识
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
①理解掌握余弦定理,能正确使用定理
②培养学生教形结合分析问题的能力
③培养学生严谨的推理思维和良好的审美能力。
教学重点:定理的探究及应用
教学难点:定理的探究及理解
二、学情分析
对于职业高中的高一学生,虽然知识经验并不丰富,但他们的智利发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、教法分析
根据教材的内容和编排的特点,为更有效地突出重点,突破难点,以学生的发展为本,遵照学生的.认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“余弦定理的发现”为基本探究内容,让学生的思维由问题开始,到发想、探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线,联系方法与技能使学生较易证明余弦定理,另外通过例题和练习来突破难点,注重知识的形成过程,突出教学理念的创新。
四、学法指导:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
五、教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成定理,大约用25分钟
第三:应用定理,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,从用正弦定理可解的两类三角形出发,揭示勾股定理特点,说明正弦定理解三角形不完备,还有用正弦定理不能直接求解的三角形,应怎样解决呢?需要我们继续探究,引出课题。
(二)逻辑推理,证明猜想
提出问题,探究问题,形成定理,回顾分析,形成结论,再认识结论,总结用途。变形延伸,培养发散,对比特殊,认知推广。落实定理,构建定理应用体系。
(三)归纳总结,简单应用
1.让学生用文字叙述余弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.回顾余弦定理的内容,讨论可以解决哪几类有关三角形的问题。
(四)讲解例题,巩固定理
1、审题确定条件。
2、明确求解任务。
3、确定使用公式。
4、科学求解过程。
(五)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(六)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了余弦定理,体现了数形结合的数学思想。
2.两种表达。
3.两类问题。
(七)思维拓展,自主探究
利用余弦定理判断三角形形状,即余弦定理的推论。
余弦定理说课稿 篇3
各位评委老师,下午好!今天我说课的题目是余弦定理,说课的内容为余弦定理第二课时,下面我将从说教材、说学情、说教法和学法、说教学过程、说板书设计这四个方面来对本课进行详细说明:
一、说教材
(一)教材地位与作用
《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了"边"与"角"的互化,从而使"三角"与"几何"产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
(二)教学目标
根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:
⒈知识与技能:
掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形
⒉过程与方法:
在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
⒊情感、态度与价值观:
培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;
(三)本节课的重难点
教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。
教学难点是:灵活运用余弦定理解决相关的实际问题。
教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。
下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
二、说学情
从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
三、说教法和学法
贯彻的指导思想是把"学习的主动权还给学生",倡导"自主、合作、探究"的学习方式。让学生自主探索学会分析问题,解决问题。
四、说教学过程
下面为了完成教学目标,解决教学重点,突破教学难点,课堂教学我准备按以下五个环节展开:
环节⒈复习引入
由于本节课是余弦定理的第一课时,因此先领着学生回顾复习上节课所学的内容,采用提问的方式,找同学回答余弦定理的内容及公式,并且让学生回想公式推导的思路和方法,这样一来可以检验学生对所学知识的掌握情况,二来也为新课作准备。
环节⒉应用举例
在本环节中,我将给出两道典型例题
△ABC的顶点为A(6,5),B(-2,8)和C(4,1),求(精确到)。
已知三点A(1,3),B(-2,2),C(0,-3),求△ABC各内角的大小。
通过利用余弦定理解斜三角形的思想,来对这两道例题进行分析和讲解;本环节的目的在于通过典型例题的解答,巩固学生所学的知识,进一步深化对于余弦定理的认识和理解,提高学生的理解能力和解题计算能力。
环节⒊练习反馈
练习B组题,1、2、3;习题1-1A组,1、2、3
在本环节中,我将找学生到黑板做题,期间巡视下面同学的做题情况,加以纠正和讲解;通过解决书后练习题,巩固学生当堂所学知识,同时教师也可以及时了解学生的掌握情况,以便及时调整自己的教学步调。
环节⒋归纳小结
在本环节中,我将采用师生共同总结-交流-完善的方式,首先让学生自己总结出余弦定理可以解决哪些类型的问题,再由师生共同完善,总结出余弦定理可以解决的两类问题:⑴已知三边,求各角;⑵已知两边和它们的夹角,求第三边和其他两个角。本环节的目的在于引导学生学会自己总结;让学生进一步体会知识的形成、发展、完善的过程。
环节⒌课后作业
必做题:习题1-1A组,6、7;习题1-1B组,2、3、4、5
选做题:习题1-1B组7,8,9.
基于因材施教的原则,在根据不同层次的学生情况,把作业分为必做题和选做题,必做题要求所有学生全部完成,选做题要求学有余力的学生完成,使不同程度的学生都有所提高。本环节的目的是让学生进一步巩固和深化所学的知识,培养学生的自主探究能力。
五、说板书
在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。