当前位置:首页 > 教学文档 > 教案

分数乘法教案

时间:2023-11-10 15:44:32
分数乘法教案模板集锦6篇

分数乘法教案模板集锦6篇

作为一位杰出的教职工,就难以避免地要准备教案,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?以下是小编精心整理的分数乘法教案6篇,仅供参考,希望能够帮助到大家。

分数乘法教案 篇1

教学目标

1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

3.培养学生分析、解决问题的能力,以及知识迁移的能力。

4.培养学生良好的审题习惯。

教学重点和难点

1.会分析数量关系,掌握解题思路,正确解答。

2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

教学过程

导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

(一)复习铺垫

1.说图意填空。(投影)

问:谁是单位1?

2.说图意回答问题。(投影)

问:①谁和谁比,谁是单位1?

3.准备题:

(做在练习本上,画图列式计算,一个学生到黑板板演。)

教师订正讲评。

提问:①谁是单位1?

③要求用去多少吨就是求什么?

少。)

④根据什么用乘法计算?

(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

(二)学习新课

1.学习例4。

(1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

(2)分析数量关系。(同桌互相说。)

提问:单位1变了吗?单位1是谁?

请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

学生汇报结果,让学生说解题思路,老师一边把图补充完整。

=2500-1500

=1000(吨)

答:还剩1000吨。

生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

师追问:求用去多少吨你是怎么想的?

答:还剩1000吨。

生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

相同点:两种解法都是经过两步计算。

不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

(4)练习做一做(1):

昆虫标本有多少件?

(做完让学生说解题思路、投影订正。)

2.学习例5。

六月份捕鱼多少吨?

(1)读题找出条件、问题。

(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

问:①谁和谁比,谁是单位1?

(3)列式解答。

师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

学生汇报结果。(老师板书列式)

答:六月份捕鱼3000吨。

师追问:你是怎么想的?

生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

师再追问:怎样求六月份比五月份多捕的吨数?

捕的吨数。

答:六月份捕鱼3000吨。

师追问:怎么想的?

生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

师问:这两种解法有什么联系和区别?

(联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

(4)练习做一做(2)。

答。

(三)巩固练习

1.补充问题并列式解答。(复合投影片)

________?

2.选择正确答案的序号填在( )里。

包?列式是

[ ]

[ ]

A.乙队修了多少米?

B.乙队比甲队多修多少米?

C.甲队比乙队多修多少米?

D.乙队比甲队少修多少米?

(3)根据条件和问题列出算式。

已知一袋大米重40千克。

(四)课堂总结

今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

课堂教学设计说明

(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

分数乘法教案 篇2

教学重点:

1、掌握两步分数应用题的解题思路和方法。

2、画线段图分析应用题的能力。

教学难点:

渗透对应思想。

教学过程:

一、复习、质疑、引新

1.指出下面分率句中谁是单位1(课件一)

①乙是甲的;

②小红的身高是小明的

③参加合唱队的同学占全班同学的;

④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

2.口头分析并列式解答

①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?( ……此处隐藏754个字……来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

分数乘法教案 篇5

教学目标:

1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、培养学生大胆猜测,勇于实践的思维品质。

教学重点:

会进行分数的混合运算,运用运算定律进行简便计算。

教学难点:

灵活运用运算定律进行简便计算。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1、运算定律。

我们在四年级时学习过乘法的运算定律,同学们还记得吗?

(学生回答,教师板书运算定律)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

2、这些运算定律有什么用处?你能举例说明吗?

2574 0.36101

(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)

二、自主探究(自主学习,探讨问题)

1、引入

同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

(板书课题:整数乘法的运算定律能否推广到分数乘法)

2、推导运算定律是否适用于分数。

(1)学生发表对课题的见解。

(2)验证

有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

3、教学例5.

(1)出示: ,学生小组合作独立解答。

4、教学例6.

(1)出示: ,学生小组合作独立计算。

(2)小组汇报学习成果,说一说你们组应用了什么运算定律。

5、小结

应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

三、拓展总结(应用拓展,盘点收获)

1、完成练习三的第6题。

学生说一说应用了什么运算定律。

2、完成课本第10页的做一做题目。

其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。

3、总结

这节课你有什么收获?

分数乘法教案 篇6

教学目标:

知识与技能

1.理解分数乘整数的意义。

2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。

过程与方法

使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。

情感态度与价值观

1.感受数学与实际生活之间的联系,激发学习兴趣。

2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。

教学重点:

理解分数乘整数的意义,探究计算法则。

教学难点:

正确计算及约分方法。

教学过程:

一、以旧引新,唤醒认知

(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)

(二)口答

(三)感受分数乘整数的意义

21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。

二、出示问题,探索新知

1、自主学习红点1。

(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的布条?指名口头列式。

(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。

(3)交流、质疑。

(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)

2、自主学习红点2。

(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。

(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。

3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)

三、分层练习,强化认知 .巩固分数乘整数的意义

1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。

2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。

3、明辨是非。

4、结合实际,解决问题。

(1)一个正方体的礼品盒,底面积是 1/9平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长7/10 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

四、总结

本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。

《分数乘法教案模板集锦6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式