可能性教案汇总5篇
作为一位无私奉献的人民教师,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。那么应当如何写教案呢?以下是小编整理的可能性教案5篇,仅供参考,大家一起来看看吧。
可能性教案 篇1教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。
2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重点:
通过活动认识一些事件发生的等可能性。
教学难点:
理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的。
教学准备:
多媒体,红球3个 黄球3个
教学过程:
一、创设情境,激趣导入。
1.出示装有3个红球的袋子
(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)
(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)
2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)
二、活动体验,探索新知。
1.摸球。
(1)猜测。
(出示上述装有3个红球和3个黄球的透明口袋)
谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?
学生自由猜测
(2)验证。
谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)
①明确活动要求。
谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。
②明确统计方法。
提问:怎样能记住每次摸球的结果呢?
以前我们用过哪些方法来记录?(画、涂方块)
可能性教案 篇2一、情境导入
谈话:小朋友们,今天这节课老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比3个小组中,哪个小组得星最多,合作得最默契,数学教案-可能性的教学设计。先来玩第一个游戏,猜猜礼袋里装着什么?
学生有的猜..有的猜...
提问:一定是吗?(不一定)
小结:也就是说,现在你们只能是猜测,可能会是...,也可能会是...,这就是我们生活中的“可能性”(板书:可能性)
二、摸球游戏
1.用“一定”来描述摸球的结果,体验事件发生的确定性。
谈话:那么袋子里究竟是什么呢?
指名学生上台并指导摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……
引导:怎么他每次摸到的都是红球呢?(生猜测:里面都是红球)同意他的猜测吗?我们一起来验证一下吧!(请XXX把里袋拎出来)
小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,那我任意摸一个球,结果会是?(红)一定吗?(板书:一定)
2.谈话:你们也想来玩摸球游戏吗?好,请组长拿出袋子。不过,在摸球之前先讲清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中并做好记录,依次传给其他组员摸,明白了吗?就让我们比一比哪组合作得最好?开始吧!
(让学生分组摸球,教师巡视指导)
汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)
猜一猜,袋子里是什么颜色的球?(黄球和绿球)
组长倒球验证,(师作出摸球的动作)轮到我摸了,我从这个袋里任意摸一个,结果会是?(黄,绿)一定吗?(不一定)那要怎么说?(可能是黄,也可能是绿)(板书:可能)
提问:那能在这个袋子里摸到红球吗?为什么?(板书:不可能)
3.小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。
如果袋子里有黄球和绿球,任意摸一个,可能是黄球,也可能是绿球。但不可能是红球。
三、实践拓展
1.练一练。
(1)(出示装有2个红球和3个黄球的袋子)瞧,在这个口袋里,任意摸一个球,一定黄球吗?那会怎样呢?
(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?为什么?
(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?
小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊 !
2.装球游戏,小学数学教案《数学教案-可能性的教学设计》。
谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!
安排3次装球活动,依次出示要求:
(1)任意摸一个球,一定是绿球。该怎么放呢?(学生讨论,放球,师巡视)
说说你是怎么放的?放3个5个都可以吗?
师表扬,说的好,只要全部是绿球,那摸到的一定是绿球。
(2)任意摸一个球,不可能是绿球。该怎么放呢?(学生讨论,放球,师巡视)
谁愿意来说一说?这么多放法都对吗?只要怎样?(不放绿球)
交流:任意摸一个,不可能是绿球,应该怎样装?装球时是怎样想的?
小结:任意摸一个,不可能是红球。有很多种装法,可以装一种、两种、三种甚至更多种颜色的球,但是不能装绿色的球。
(3)任意摸一个球,可能是绿球。
(每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励)
3.转盘摇奖活动
1、猜测:(师出示红黄蓝三色转盘)观察转盘,有几种颜色?想一想,转盘停止转动后,指针会指在哪里?能肯定吗?那应该怎么说?(转盘停止转动后,指针可能会指着红色,可能会指着黄色,还可能会指着蓝 ……此处隐藏1670个字……并说说摸出红球和黄球各多少次。展示后,把各小组的.记录单对应着排列起来。
讨论:比较各小组的摸球结果,你能发现什么?学生讨论,明确:各小组摸出红球、黄球次数不完全相同;每次摸出的球的颜色也不完全相同;但每个小组既摸出了红球,也摸出了黄球。提问:通过摸球游戏,你有什么体会?
2.教学“试一试”。
出示口袋,并在口袋里放2个红球。提问:现在口袋里有几个球?是什么颜色的?如果从这个口袋里任意摸出1个球,结果会怎样?(板书:一定)提问:如果口袋里只放了2个黄球,从中任意摸出1个球,可能摸出红球吗?为什么?(板书:不可能)追问:如果口袋里放1个黄球和一个绿球,从中任意摸出1个球,能摸出红球吗?比较:请同学们回顾一下例1和“试一试”的学习过程,想一想,同样在口袋里摸球,例1和“试一试”有什么不同?
3.小结
像这样,有些事件的发生与否是确定的,要么一定发生,要么不可能发生,这样的事件又称为确定事件;有些事件的发生与否是不确定的,可能发生,也可能不发生,这样的事件又称为不确定事件。(板书:确定性不确定性)4.教学例2。
谈话:通过摸球游戏,我们知道了有些事件的发生是确定的,有些事件的发生是不确定的。接下来,我们来玩摸牌游戏。(出示例2中的4张扑克牌)如果把这4张牌打乱后反扣在桌上,从中任意摸出1这,可能摸出哪一张?摸之前能确定吗?提问:可能出现的结果一共有多少种?把“红桃4”换成“黑桃4”,提问:现在的4张牌中,既有红桃,又有黑桃。如果从这4张牌中任意摸出1张,可能出现的结果一共有多少种?学生在小组里讨论,交流。
验证,各小组合作进行摸牌游戏。一共摸40次。
展示摸牌结果。比较发现。
可能性教案 篇5教材说明
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
1.事件发生的可能性以及游戏规则的公平性。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
2.中位数的统计意义及计算方法。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
2.加强学生对中位数在统计学意义上的理解。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。